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Summary 

Understanding how each individual‘s genetics and physiology influences the pharmaceutical 

response is crucial to the realization of personalized medicine and the discovery and validation 

of pharmacogenomic biomarkers is key to its success.  However, integration of genotype and 

phenotype knowledge in medical information systems remains a key challenge.  The inability to 

easily and accurately integrate the results of biomolecular studies with patients‘ medical records 

and clinical reports prevents us from realizing the full potential of pharmacogenomic knowledge 

for both drug development and clinical practice.  Herein, we describe approaches using 

Semantic Web technologies, in which pharmacogenomic knowledge relevant to drug 

development and medical decision support is represented in such a way that it can be efficiently 

accessed both by software and human experts. We suggest that this approach increases the 

utility of data, and that such computational technologies will become an essential part of 

personalized medicine, alongside diagnostics and pharmaceutical products. 

 

Keywords: ontologies, pharmacogenomics, translational medicine, personalized medicine, 
clinical decision support systems, knowledge representation 
 

Future perspective 

Personalized medicine involves the customization of therapies based on genetic, environmental 

and physiological factors to deliver the best possible care to individual patients. In the past 

decade, there has been a substantial shift in our understanding of factors that influence 

therapeutic outcomes. This has been driven largely by the increasing availability of large scale 

profiling technologies, including next generation sequencing and gene expression profiling. One 

of the prominent applications of molecular profiles in clinical practice is to stratify the patient 

population in order to identify positive, neutral and negative responders. Widespread use of 

profiling technologies has become significantly more feasible for inclusion in clinical trials as 

costs have been decreasing [1]. Indeed, the ability to build and test patient profiles against 

therapeutic outcomes in clinical trials may increase the number of approved therapies overall, 

with the resulting drugs and therapies approved for clearly specified segments of the 

population. Additional benefits for pharmaceutical companies include the opportunity to develop 

incrementally modified drugs with reduced risk for drug development [2]. While all of these 

developments promise to change the practice of medicine, a remaining challenge lies in the 

effective integration of highly heterogeneous data obtained from a variety of sources, and its 

use in accurate predictive systems for supporting knowledge discovery and personalized clinical 

decision making. 

The role of pharmacogenomics in tailored therapies 

In current practice a drug dose is adjusted according to generic factors such as weight, age and 

kidney and liver function. However, two individuals with the same values for these parameters 

may respond differently to the same therapy, due primarily to differences at the genetic level 

that affect either the rate at which the drug is metabolized or the susceptibility of the target to 



modulation.  Pharmacogenomic studies attempt to link genetic variation with differences in the 

drug responses. The use of an individual‘s genetic information to select drugs and specify 

dosages lies at the heart of personalized drug-based therapies. For example, warfarin is one of 

over a dozen drugs approved by the U.S. Food and Drug markers are provided (table 1). In the 

US alone, over 20 million prescriptions of warfarin are written per year to treat chronic anti-

coagulation indications including atrial fibrillation, deep vein thrombosis, pulmonary embolism 

and artificial heart valves. Over- or underdosing can have serious consequences: warfarin is 

one of the leading causes of emergency care and drug-related hospitalization due to adverse 

drug events [3]. Genetic variations in two key genes have been found to strongly affect the 

toxicity of warfarin and consequently its initial recommended dose. First, the cytochrome P450 

2C9 enzyme (CYP2C9) influences the overall amounts of warfarin in the bloodstream. Second, 

warfarin‘s activity depends on the variant of the gene encoding a subunit of its drug target, the 

enzyme vitamin K epoxide reductase.  

 
Table 1: Range of Expected Therapeutic Warfarin Doses (mg/day) based on CYP2C9 and 

VKORC1 genotypes as described in an FDA drug label. Reproduced from the updated warfarin 

(Coumadin, Bristol-Myers Squibb, Princeton, New Jersey) product label. Dosage 

recommenations in grey deviate from standard dosage recommenations because of 

pharmacogenetic findings. CYP2C9 = cytochrome P450 2C9; FDA = U.S. Food and Drug 

Administration; VKORC1 = vitamin K epoxide reductase complex, subunit 1.  

 genotype 
CYP2C9  

*1/*1 *1/*2 *1/*3 *2/*2 *2/*3 *3/*3 

VKORC1 

GG 5-7 mg  5-7 mg  3-4 mg  3-4 mg  3-4 mg  0.5-2 mg  

AG 5-7 mg  3-4 mg  3-4 mg  3-4 mg  0.5-2 mg  0.5-2 mg  

AA 3-4 mg  3-4 mg  0.5-2 mg  0.5-2 mg  0.5-2 mg  0.5-2 mg  
 

 
While the warfarin dosage table is relatively simple to interpret, the inclusion of additional 

factors and more complex dosing algorithms, which have been demonstrated to improve 

warfarin dosage [4–6], requires a more sophisticated, computer-assisted system for 

individualizing therapies. Furthermore, it can be expected that clinically relevant 

pharmacogenomic findings will be discovered for a rapidly growing number of drugs, so that 

pharmacogenomic considerations will be relevant for not only a few, special therapies, but for a 

large fraction of commonly prescribed drugs.  

 
As the findings and guidelines for optimizing pharmacotherapy become more complex and 

more widespread, they are likely to become so overwhelming for clinicians that they are not 

applied consistently in daily practice. If this occurs, the benefits of treatment optimization based 

on pharmacogenomic knowledge will not reach patients. To realize the full potential of 

pharmacogenomics, the use of computer-based decision support systems will become 

indispensable. The move to more advanced decision support in clinical practice would also 

make it possible to consider drug-drug interactions that influence drug or target activity.  

Semantic Infrastructure for the Biomedical Sciences 

In this paper we report on progress toward the development of a global computational 

infrastructure for pharmacogenomics in the context of personalized medicine. At the heart of 



this infrastructure are the so-called Semantic Web technologies produced by the World Wide 

Web Consortium (W3C). These technologies aim to facilitate the representation and processing 

of datasets containing increasingly sophisticated knowledge. Semantic Web technologies are 

being adopted worldwide by organizations that want to leverage technology built for the World 

Wide Web in order to publish, share, query and integrate data with others. Hundreds of 

datasets have been linked in this way, resulting in a global cloud of interlinked data. We will 

identify datasets and vocabularies of interest for pharmacogenomics from which decision 

support systems may be developed in the future. 

 

Semantic Web technologies are based on two ideas: resolvable identifiers and machine 

understandable descriptions. Uniform Resource Identifiers (URI) can be used to identify any 

entity, whether it is a hospital, a dosage regime, a kind of drug, a kind of genetic variation, or 

even a clinical report. An example of a URI is that for warfarin 

(http://bio2rdf.org/drugbank_drugs:DB00682) as defined by Drugbank database, but which is 

provided by the Bio2RDF project [7]. Entities identified by URIs can be described in terms of 

their attributes and the relations they hold with other entities. The Resource Description 

Framework (RDF, [8]) provides a simple model in which statements are captured using subject-

predicate-object triples, where the predicate indicates a relation between the subject and the 

object. So, a statement that warfarin is the ingredient of a drug with the brand name Coumadin 

would be written as: 

 

<http://bio2rdf.org/drugbank_drugs:DB00682> 

  < http://bio2rdf.org/drugbank_ontology:brandName>  

    “Coumadin” 

 

A statement that warfarin (as defined by DrugBank entry) is related to warfarin (DB00682as 

defined by ChEBI entry 10033) would be written: 

      

<http://bio2rdf.org/drugbank_drugs:DB00682> 

 <http://bio2rdf.org/bio2rdf_resource:xRef> 

    <http://bio2rdf.org/chebi:10033> 

 

Based on such triples, complex networks of interlinked statements can be built. This makes it 

possible to navigate and aggregate globally distributed data, enabling the transparency and 

scalability that made the Word Wide Web one the most successful technologies in recent 

history. 

 

Slightly more sophisticated than RDF is OWL, the Web Ontology Language [9]. OWL is based 

on formal logics and can be used to capture general rules about the world (such as ―every 

person has two two biological parents‖, ―every CYP2C9*2 allele has a thymidine nucleoside at 

position 430‖).  It has been used on many occasions to formally represent pharmacogenomics 

knowledge so that it becomes possible to answer questions that require automated reasoning 

[10,11]. 

 



Linking Open Data 

Linked Open Data (LOD) is a set of design principles which make it practical to share machine-

readable information on the web. The set of services following these principles has come to be 

called the Linked Open Data cloud. This cloud is growing exponentially, forming a large, 

distributed data store collecting cultural, geographic, political, economic, scientific and other 

information. The distributed nature of these databases enables independent contributions, 

which is critical to growing knowledge at the scale required to capture the domains intrinsic to 

solving health care and pharmacology problems. 

 

At the core of the LOD cloud is RDF's use of IRIs (think URLs) for distributed extensibility. 

Using IRIs to represent e.g. chemicals and the relationships between them, encourages others 

to use the same identifiers, and enables consumers to be confident about what concepts the 

data publisher is trying to convey. Identifiers from Uniprot and KEGG are widely used in the 

around 25 biological LOD data sets.   

 

LOD is designed to encourage the expression of linkages between data. The network basis for 

RDF allows us to express the interconnectedness of databases like DailyMed, DrugBank and 

SIDER, and to ask questions which reflect the real complexities of our domain. A wide variety of 

pharmaceutical datasets have been made openly available in Semantic Web formats by the 

Linked Open Drug Data task force of the World Wide Web Consortium [12].  

Information resources for pharmacogenomics 

A number of public domain databases are available that can provide key information relevant 

for understanding genetic variation and its potential impact on disease and treatment. Of special 

interest are those curated databases that describe associations between genotypes and 

phenotypes in humans (some examples are provided in table 2). 

 
Table 2: Databases containing associations between genetic variations, associated phenotypes 
and genetic tests. 

Pharmacogenomics 
Knowledgebase  
(PharmGKB) 

A large database of curated knowledge and raw data about 
associations between genes, genetic variants, drug response 
and disease [13,14]. 

GWAS Central 
(formerly called 
HGVbaseG2P) 

A database of genome-wide association studies that also 
provides summaries of study results [15]. 

SNPedia A wiki-based platform containing information on phenotypes 
associated with SNP variants, population prevalence of genetic 
variants and SNP microarrays [16]. 

Online Mendelian 
Inheritance in Man 
(OMIM) 

Information about diseases with Mendelian inheritance, 
including references to the implicated genes [17]. 

dbGaP Results of studies that have investigated the interaction of 



genotype and phenotype [18]. 

GEN2PHEN Knowledge 
Center 

Integrated genotype-to-phenotye data with facilities for data 
annotation and user feedback [19,20]. 

GET-Evidence A large database of automatically annotated and then manually 
curated information about the impact of genetic variations [21]. 

HuGE Navigator Information on genetic variants, gene-disease associations, 
gene-gene and gene-environment interactions, and evaluation 
of genetic tests [22]. 

Genetic Association 
Database (GAD) 

Diseases associated with genetic variants [23]. 

Genotator An aggregated gene-disease relationship data containing an 
integrated view over other datasets [24]. 

NCBI GeneTests This resource concerns genetic tests used in diagnostic and 
genetic counseling [25]. 

The Genetic Testing 
Registry 

A database (under development) about genetic markers and 
tests that enable their clinical exploration [26]. 

 
To create a comprehensive knowledge base about drugs and their pharmacogenomic 

properties, these data need to be combined with data about approved pharmaceuticals, 

ongoing clinical trials, drug interactions, clinical guidelines and other kinds of biomedical 

knowledge including observations that link genotypes to phenotypes. However, the scalable 

and sustainable integration of data from such a variety of large, complex, distributed and 

heterogeneous sources has proven to be a challenge. Over the past five years, the 

development of ontologies to integrate data has emerged as a key technology for addressing 

the challenge of data integration.  

 

Ontologies and terminologies play a critical role in data integration. They enable users to use 

well-defined, unambiguous terms to semantically annotate their data, thereby providing the 

means by which one can query across different datasets which use the same terms. 

Terminologies and coding systems focus on providing a comprehensive set of terms. By 

contrast, ontologies are a formal representation for specifying the entities and attributes in a 

domain of discourse such as pharmacogenomics. When an ontology is expressed in OWL, 

automatic reasoning can be performed with a variety of free open source tools. Table 3 lists 

relevant ontologies and terminologies of interest to pharmacogenomics.  

 
Table 3: Ontologies and terminologies of relevance for pharmacogenomics. 

Types of 
represented 
information 

Name Description 



All of 
translational 
and 
personalized 
medicine 

Translational Medicine 
Ontology (TMO) 

An ontology covering key aspects of the entire 
spectrum of  translational and personalized 
medicine, developed by participants of the W3C 
Heath Care and Life Science Interest Group [27]. 

PGx Suggested Ontology for 
Pharmacogenomics 
(SO-Pharm) 

A complex ontology that represents phenotype, 
genotype, treatment and their relationships in 
groups of patients. SO-Pharm has been designed to 
guide knowledge discovery in pharmacogenomics 
[28]. 

PGx Pharmacogenomics 
Ontology (PO) 

An ontology built from PharmGKB, and includes 
biomedical measures and outcomes [29]. 

Mutation 
Impact  

Mutation Impact 
ontology 

An ontology designed to represent mutation impacts 
on protein properties resulting from an information 
extraction process [30]. 

Genotype Sequence Ontology 
(SO) 

Contains terms often used for the annotation of 
sequences and features, including detailed 
description of different types of sequence variations 
[31,32]. 

Chemical ChEBI Chemical Entities of Biological Interest (ChEBI) is a 
freely available dictionary of molecular entities 
focused on ‗small‘ chemical compounds [33,34] 

Chemical RxNorm Normalized names for clinical drugs, references to 
other terminologies [35,36]. 

Chemical, 
clinical  

Logical Observation 
Identifiers Names and 
Codes (LOINC) 

An established coding system for clinical lab results. 
Contains many identifiers for results of genetic 
[37,38]. 

Phenotype Disease Ontology An ontology of human diseases [39,40]. 

Phenotype Phenotypic Quality 
Ontology (PATO) 

An general ontology of qualities that can be used to 
describe phenotypes [41]. 

Phenotype Human Phenotype 
Ontology 

An ontology for phenotypic abnormalities 
encountered in human disease [42]. 

Anatomy Foundational Model of 
Anatomy (FMA) 

An ontology for the canonical, anatomical structure 
of an organism [43]. 

Safety Medical Dictionary for 
Regulatory Activities 
(MedDRA) 

A terminology currently for safety reporting 
(mandated in Europe and Japan for safety 
reporting, standard for adverse event reporting in 
the U.S.) [44]. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874327/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874327/


The coverage of genetic information in established clinical coding schemes and ontologies 

varies. For example, Logical Observation Identifiers Names and Codes (LOINC) is an 

established standard for representing clinical laboratory results. The current version contains 

many identifiers for the results of genetic tests. On the other hand, SNOMED CT, one of the 

most widely employed general clinical terminologies, contains very few specific terms from the 

domains of genetics and pharmacogenomics. RDF/OWL makes it possible to merge these 

different coding schemes and ontologies in order to compile a comprehensive model covering 

all aspects of pharmacogenomics and its clinical context. 

 

Extracting knowledge from the pharmacogenomics literature 

A substantial amount of pharmacogenomic knowledge is captured in the scientific literature. 

Unfortunately, this knowledge is expressed in natural language, and is therefore difficult to 

integrate and use in combination with other structured data resources. To complicate matters, 

the volume of literature containing facts relevant to pharmacogenomics is large and 

continuously increasing.  

 
To effectively extract pharmacogenomic facts from the literature, automated methods must be 

employed. Information extraction techniques such as natural language processing (NLP) as well 

as statistical models from machine learning can be used to identify entities of 

pharmacogenomic interest (such as genes, gene variants, drugs and drug responses) and the 

relations between these entities in unstructured text [45]. After extraction, entities and relations 

can be normalized with standard dictionaries and ontologies [46,47], and encoded in a 

structured format. Such normalized relations can subsequently be compared to other literature 

derived relations and to the content of other databases [48]. Furthermore, Semantic Web 

representations of the extracted normalized relations can be made available to a broader 

community of researchers, drug developers and medical practitioners. 

 
At present, text collections used for text mining in biomedical research are mostly comprised of 

Medline abstracts. In the future, information extraction will increasingly be used on full text 

article collections and will allow a more complete extraction of gene-drug-phenotype 

relationships from scientific publications, clinical records, or the patent literature. 

 
The use of information extraction techniques in pharmacogenomics resulted, for example, in the 

creation of tools for the extraction of pharmacogenomic concepts and relationships [49], the 

automatic construction of databases, in particular a side effect resource (SIDER) [50], the 

completion of pharmacokinetics pathways [51], the creation of a Pharmacogenomic 

Relationships Ontology (PHARE) [52], and the extraction of mutation impacts on protein 

properties which were used to populate the Mutation Impact Ontology [53]. 

 

Using semantically enabled pharmacogenomics data for personalized clinical 
decision support 

Once all the different components described above are in place and have matured, a powerful 

system for the creation of decision support systems for personalized pharmacotherapy emerges 

(Fig. 1). While clinical decision support systems in the past often suffered from a lack of publicly 



available, formally represented biomedical knowledge, the translation of the growing wealth of 

pharmacogenomic findings into rules for clinical decision support is relatively simple.  

 

 

Figure 1: The components of an IT infrastructure for personalized pharmacotherapy. Relevant 

datasets such as genotype-phenotype associations or information about specific drugs are 

exposed publicly on the World Wide Web in Semantic Web formats. The datasets are 

interlinked, forming a distributed, yet coherent knowledge base. This knowledge base can then 

be used as the basis for the creation of clinical decision support systems which can reason over 

individual patient data when medical professionals are prescribing drugs. 

 

We can conceptualize the ongoing discovery of a gene variant and its impact on medical 

outcomes as a continuous ‗pharmacogenomic information pipeline‘ (table 4). Different 

stakeholders, datasets and technologies are associated with each level between initial 

experimental detection of a specific genetic variant (raw preclinical data) and the eventual 

clinical validation and deployment of genetic data in clinical decision making (established 

clinical rules that can be implemented in decision support systems). 

 



Table 4: The pharmacogenomic information pipeline. We can conceptualize the translation of a 

pharmacogenomic finding from research (raw data) into practice (established clinical rules that 

can be implemented in decision support systems) as a continuum with several levels.  

 

Level of establishment Current number of described loci with 
variation that have reached that level 
(order of magnitude)  

Level 1, Identification of variation: Experimental identification and validation of a human gene 
variant, submission to a gene variant database, annotation, description and uniform identification of the 
gene variant as a reference sequence or Locus Reference Genomic entry [54]. 

4*10^7 
(number of human RefSNP clusters in 
dbSNP) 

Level 2, Clinical genotype-phenotype association: Clinical studies of phenotypes associated with 
genetic variants (e.g., drug response), deposition in genotype-to-phenotype databases.  

10^4 
(estimate) 

Level 3, Approval / recognition: Recognition of the clinical significance of the genotype-phenotype 
association by some authority, e.g., mention of impact of genetic variants in package inserts, approval 
of drugs for patients with specific genotype, clinical validation of companion diagnostics, modification of 
a national clinical guideline to contain genotype-based decision making.  

10^2 
(estimate based on number of FDA 
product labels containing 
pharmacogenomic information [55]. 

Level 4, Significant clinical application: Application in clinical practice, possibly recognized as 

relevant by payers (reimbursement of diagnostic tests, requirement of testing for reimbursement of 

certain treatments). Implementation of pharmacogenomic guidelines in clinical decision support 

systems. 

10^1 
(number of widely documented 
examples such as warfarin or 
herceptin) 
 

Level 5, Surveillance: Monitoring of benefit, risk and cost associated with the implementation of a 
specific pharmacogenomic guideline in clinical practice 

?  
(surveillance not yet established) 

 

 

This pharmacogenomic information pipeline exhibits a steep decline in the number of genetic 

variants at the different stages from early clinical research to routine clinical application. It is 

currently not clear how long the transitions from one level to the next will take on average, and it 

is possible that the approval / recognition of pharmacogenomic guidelines by official authorities 

might be a major roadblock towards clinical adoption, especially if large-scale randomized 

clinical trials are seen as necessary prerequisites for approval. However, Altman et. al recently 

argued that, given the rapidly decreasing cost of genetic testing and the lack of potential harm 

relative to established practices, proof of noninferiority might be sufficient for initial 

implementation of pharmacogenomic guidelines in clinical practice [2]. In such a scenario, the 

number of pharmacogenomic findings potentially usable in clinical applications could increase 

rapidly over the coming decade, providing a challenge to clinicians who want to work with the 

best available evidence. An information infrastructure that makes findings of a specific quality 

directly available for use in clinical decision support systems, in that case, be critical to the 

adoption of pharmacogenomics in clinical practice. For example, the OWL ontology language 

and its automated reasoning functionality can be leveraged to describe subgroups of patients 



with distinct pharmacogenomic characteristics, and to place individual patients into their 

appropriate pharmacogenomic groups (exemplified in figure 2). 

 

 

Figure 2: OWL can be used to describe groups and subgroups of patients with specific 

pharmacogenomic needs. Based on molecular data and basic clinical data, an OWL reasoner 

can automatically place each individual patient into their appropriate pharmacogenomic group. 

A decision support application can then provide medical professionals with alerts, reminders 

and recommendations for each specific patient group. 

On the horizon 

Several technologies and resources vital to the success of the approach described in this paper 

are currently under development. While the addition of new pharmacogenomic datasets to the 

Semantic Web is underway, substantial challenges remain in making the process of conversion 

sufficiently simple that non-experts can actively participate.   

 

Further work is still required for strengthening the integration of Semantic Web technologies into 

established IT systems at hospitals, medical practices and pharmaceutical companies [56,57]. 



The work of the HL7 groups for clinical genomics [58] and clinical decision support [59] provide 

excellent starting points for such an endeavor. 

 

Significant amounts of pharmaceutical data have been made available in RDF/OWL in recent 

years. Several pharmaceutical companies have internal Semantic Web projects for the 

purposes of data sharing within the enterprise. Furthermore, several large-scale projects based 

on Semantic Web formats for pre- and post-competitive information sharing in the 

pharmaceutical industry were launched recently. These include the SESL project of the Pistoia 

Alliance [60], the Open Pharmacological Concepts Triple Store (OpenPhacts) [61] and 

Electronic Health Records for Clinical Research (EHR4CR) [62] projects funded by the 

European Innovative Medicines Initiative. In the U.S., the eMERGE network [63] is a consortium 

of bio-repositories linked to electronic medical records data for conducting genomic studies 

organized by the National Human Genome Research Institute (NHGRI). Such initiatives could 

provide the critical mass necessary to build key parts of a pharmacogenomics information 

infrastructure. 

 

The field of pharmacogenomics has grown significantly since the publication of the human 

genome, and advances in sequencing technology have resulted in an explosion in the amount 

of genomic data that is now available.  As existing data sets are expanded and new sources of 

information are developed, the challenge of accessing and integrating information will continue 

to grow. 

  
Semantic Web technologies have already been shown to help address challenges associated 

with pharmacogenomic data.  The next decade will witness a convergence of advances in 

technology in both the laboratory and in computational infrastructure, which will present exciting 

opportunities to the field of pharmacogenomics and bring us closer to realizing the vision of 

personalized medicine. 

 

Executive summary 

 Pharmacogenomics has the potential to improve the effectiveness of health care and the 

development of new therapies. 

 As pharmacogenomics becomes more complex, the therapies that it enables will 

depend on advanced decision support systems. These systems will utilize a semantic 

infrastructure for the biomedical sciences that is now being built. 

 The datasets required for pharmacogenomics research and application in clinical 

practice are huge, distributed, heterogeneous and growing. The infrastructure that 

handles this must lower the cost of accessing and integrating such data. 

 In order to discover associations between genes, gene variants, drugs, drug response, 

phenotypes, and diseases, the infrastructure should enable the seamless integration of 

data among relevant datasets. 

 To realize the full potential of pharmacogenomics, the fruits of this technology need to 

be brought all the way from the research environment to the point of routine clinical 

decision making. 



 Semantic Web technologies such as the Resource Description Framework (RDF) and 

the Web Ontology Language (OWL) are key standards for the creation of such an 

interoperable information infrastructure for translational, personalized medicine. 

 Further key datasets for pharmacogenomics will be made available in RDF/OWL 

formats over the next three years. While challenges remain in integrating these 

technologies with existing IT systems at hospitals, medical practices and pharmaceutical 

companies, it is likely that first implementations in these settings will be deployed within 

the next five years. 
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